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Abstract-The onset of steady two-component Btnard convection in a cylindrical geometry with a free 
surface is studied with due consideration given to the adsorption and eventual accumulation of a solute at 
this free surface. To a !irst approximation the effect of the latter processes upon the critical Marangoni 

and Rayleigh number is given. 

1. INTRODUCTION 

RECENTLY, Narayanan and co-workers [l-3] studied 
the onset and weakly non-linear development of 
steady B&nard convection in a cylindrical geometry. 
They reported some interesting mathematical findings 
when buoyancy and surface tension gradients act sim- 
ultaneously. On the other hand, one of the present 
authors has also, recently, treated the onset of buoy- 
ancy-driven instability in a two-component fluid cyl- 
indrical layer [4, 51. It was shown that the aspect 
ratio and the second component either compete or 
cooperate in delaying the onset of instability thus 
enhancing or reducing the buoyancy force. In this 
paper we extend the results reported in refs. [4, 51 by 
letting the upper surface of the cylinder become free. 
As we shall restrict consideration to the onset of 
steady convection and not consider the development 
of cellular patterns, the assumption of initially axisym- 
metric disturbances for flat cylinders is compatible 
with experiment [6,7] and with the assumptions used 
by Narayanan and co-workers [l, 21. Then we point 
out up to what extent adsorption and eventual 
accumulation of solute, the second component, at the 
free surface affect the onset of instability. 

2. FORMULATION OF THE PROBLEM 

We consider a motionless binary liquid mixture in 
a vertical cylinder of height L and horizontal diameter 
2r. When the initially homogeneous layer is heated 
from below the Soret effect distributes the components 
in accordance with the value given to the thermal 
gradient (AT/L, where T denotes temperature) until 
the mass and heat fluxes balance each other. If the 
upper air-liquid free surface is impervious to mass 
transfer and we neglect evaporation the solute may, 
however, be adsorbed and may, eventually accumu- 
late there. 

In the simplest case the thermohydrodynamic equa- 
tions describing the evolution of small disturbances 

upon the quiescent state are [8] 

divu = 0 (1) 

&/at = -(l/p,)gradp+(Sp/p,)gk+vV’o (2) 

&3/i%- w(AT/L) = KV’B (3) 

dn/at- w(AN, /L) = DV’n+ N:N@‘V2B (4) 

together with the following boundary conditions 
(bc.) : 

at the bottom (z = 0) 

u=o (5) 

e=o (6) 

D(a~/az)+iv~iv~w(ae/az) = 0; (7) 

at the free surface for simplicity assumed unde- 
formable (2 = L) 

w=o (8) 

aejaz = 0 (9) 

--D(at2jaz)-Nyiv;w(ae/az) = k,n--kly (10) 

p,,v(au"/az) = grad,a (11) 

(ay/dt)+r0div,u”-D,v2y = kin-k_,y. (12) 

We also assume the lateral walls to be rigid, i.e. 
u = 0 at the periphery, and the following two equa- 
tions of state 

p = po(l -!Zt?+/In) (13) 

d = a,+ (aa/ane+(aa/aN,)n. (14) 

For later convenience and universality in the argu- 
ment we rescale the problem in order to have dimen- 
sionless quantities and to sort out the relevant physical 
parameters. As in ref. [4] we choose the following 
scales : unit length, r ; unit time, r’/q with K the ther- 
mal diffusivity (thermometric conductivity) ; velocity, 
KL/r’; temperature, AT; concentration (mass frac- 
tion) of, say, component ‘one’, AN,; surface wn- 
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NOMENCLATURE 

Al,AI* adsorption number (according to units P pressure field disturbance 
used) R,R* Rayleigh number (according to units 

D mass diffusivity used) 
D Soret mass diffusivity r radius of cylinder 

D, surface mass diffusivity rD inverse Lewis number 
E,E* elasticity (solutal Marangoni) number rb surface inverse Lewis number 

(according to units used) S Soret number (buoyancy ratio) 

f aspect ratio T temperature 

9 gravitational acceleration II velocity field, components (u, u, w) or 
H, H* surface excess-solute number (u,, ug, w) 

(according to units used) US surface velocity. 
h dimensionless height 

J, &h-order Bessel function Greek symbols 
k, k* Fourier wave number (according to CL thermal expansion coefficient of liquid 

units used) mixture 
k unit vector in the z-direction B volume expansion due to variation of 
k ,, k_ , adsorption, desorption coefficients the mass fraction N, 
L height of liquid layer I- mass fraction of component ‘one’ at 
M, M* thermal Marangoni number (according free surface 

to units used) Y disturbance of r 
N,N* concentration near surface relative to 0 temperature disturbance 

solute gradient Ic thermal diffusivity of liquid mixture 

N, mass fraction of component ‘one’ V kinematic viscosity of liquid mixture 
NY, N; mass fraction reference values u air-liquid surface tension 
n disturbance of N, P density of fluid or radial coordinate (in 
P Prandtl number different paragraphs). 

centration, roANI /NY ; and pressure, powL/r3. Thus pvDLNy. H* accounts for the excess-solute accumu- 
in dimensionless form the equations are (no confusion lation at the air-liquid interface. 
is expected although we use the same notation for 
dimensional and dimensionless quantities) 

divu=O, u=(u,u,w) 

P-‘(&I/&) = -gradp+R*Bk+R*Snk+V’u 

d@/dt = w+ w 

&/at = r,V*(n-8)fw 

together with the b.c. 

atz=O 

u = B = a@-e)/az = 0; 

at z = L/r = h 

w = aejaz = 0 

an/a2 = A,*(? - n) 

adlaz = -M* grad, 0 - E*rb grad, y 

(1% 

(16) 

(17) 

(18) 

(19) 

W-0 

(21) 

(22) 

3. RESOLUTION OF THE PROBLEM AND 

RESULTS 

As in ref. [4] we have used a Gale&in method with 
cylindrical coordinates (p, $J, z) and the following trial 
solutions : 

up = ~(32 - 2h) cos &U(p) (24) 

U+ = ~(32 - 2h) sin n~$ V(p) (25) 

w = u, = -z’(z-h)cosnqbW@) (26) 

6 = z(z - 2h) cos n+ W(p) (27) 

n = 2zh cos nq5 W(p) (28) 

y = 2h2cosn+W(p) (29) 

with 

U(p) = - [J;(k*p) - J;(k*)p”+ ‘]/k*J,(k*) (30) 

H*(ay/dt+N* div,u”-r”,V2y) = n--y; (23) V(p) = n[J,(k*p)/p- J,,(k*)p”+ ‘]/k*‘J,(k*) (31) 

where we have introduced the following groups: W(P) = [Jn(k*p)/J&*)l -P”. (32) 
P = V/K; r,, = D/K; R* = ugr“AT/vrcL, S = -flAN,/ 
UAT, A: = k,r/D, H* = rcr’/k,Nir’, N* = LNT/ 

Note that u,, u@ and w satisfy continuity equation 

rAN,, h = L/r. r& = D,/K, M* = -(au/ 
(1) so that 

aT)r*AT/pwL and E* = - (a0/ar)r”r2AN, 1 U’+U/p+nV/p-W=O. (33) 
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Here and earlier a prime denotes a derivative with 
respect to the corresponding argument. 

Then using the above indicated trial functions the 
standard Galerkin method [9] yields the neutral stab- 
ility loci. As the analytical expressions of these loci 
involve rather cumbersome, albeit elementary 
relations between all the parameters in the problem 
we shall report here the results found in table and 
figure form only. Note that in ref. [4] we used two 
groups of scales (for tall and flat cylinders, respec- 
tively). Here the second set of scales can be obtained 
by writing 

f = l/h, kf = k*, R = ugL’AT/wc 

M= - (aa/aT)LAT/pvlc 

E = - (aa/aI-)T’LAN/pvDN: 

H = d-‘/k,N:L2 

N = NY/AN, 

and 

A, = k,L/D. 

In Table 1 we provide the critical values for the 
solutal (elasticity) Marangoni number, E, when we 
set to zero the Rayleigh, R, the thermal Marangoni, 
A4, numbers and the buoyancy ratio, S. Values of E 
are given as we vary the aspect ratio f as well as 
the excess-solute number, H. The latter has a slightly 
stabilizing effect. With data from ref. [lo] H is gen- 
erally in the range 10-6-10-‘. 

Figure 1 depicts the neutral stability curves in the 
plane (E, H) as we vary the Rayleigh and thermal 
Marangoni numbers. 

Figure 2 shows how the (E, R) neutral stability 

Table 1. Critical solutal (elasticity) Marangoni numbers for 
various aspect ratios of the cylinder, f, and the excess-solute 
number, H. j is the number of zeros of the Bessel function 

Jo@).R=M=S=O,A,=rD=r~=O.O1andN=10 

H=O.OO H = 0.05 H = 0.10 

f E i E i E i 

2.8 79.6 2 105.9 1 151.6 1 
4 78.8 3 106.9 2 162.4 2 
5.2 78.6 4 108.0 3 150.7 2 
6.4 78.4 4 109.1 4 150.7 3 
7.6 78.2 5 108.2 4 153.6 4 
8.8 78.2 6 107.8 5 150.8 4 

10 78.2 7 107.8 6 150.7 5 

FIG. 2. Thermosolutal convection with a free surface. Neutral 
stability lines for the onset of instability as we vary the excess- 
solute number, H, and the buoyancy ratio, S. E is the solutal 
(elasticity) Marangoni number and R the Rayleigh number. 

150, 1 

FIG. 1. Thermosolutal convection with a free surface. Neutral 
stability lines for the onset of solutal convection when we 
have excess-solute accumulation at a free surface. Values of 
the solutal (elasticity) Marangoni and excess-solute numbers 
are given for various choices of the Rayleigh (R) and thermal 

Marangoni (M) numbers. Figure 3 depicts the neutral stability lines in the (M, 

lines are affected by the values taken by the excess- 
adsorption parameter, H. We also show here the 
influence of the buoyancy ratio. It appears that H has 
no influence upon the critical values of the Rayleigh 
number whereas the buoyancy ratio does not alter the 
critical elasticity number. 

50 

0 
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FIG. 3. Thermosolutal convection with a free surface. Neutral 
stability lines in the plane of both Marangoni numbezs, M 
and E, as we vary the Rayleigh and the excess-solute accumu- 

lation numbers, R and H, respectively. 
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E) plane as we vary the Rayleigh and the excess-solute 
numbers. Again the latter plays a stabilizing role 
whereas the former is indeed destabilizing when the 
layer is heated from below. 

Finally, within a reasonable 15% deviation and 

limiting ourselves in each reference to the appropriate 
case, we have recovered earlier reported results [l-3, 
8, 11, 121. 
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CONVECTION AVEC SURFACE LIBRE DANS UNE GEOMETRIE CYLINDRIQUE: 
NOTE SUR LE ROLE DE ~ADSOR~ION DE SURFACE ET DE ~ACCUMULATION DE 

SOLUTE A L’INTERFACE AIR-LIQUIDE 

R&sum&-La mise en place de la convection de Benard avec deux composants, dam une geomktrie 
cylindrique, avec une surface libre, est Btudiee en considerant l’adsorption et l’accumulation Bventuelle 
dun solute a cette surface libre. En premi$re approximation, on donne l’effet de ces mecanismes sur les 

nombres critiques de Marangoni et de Rayleigh. 

KONVEKTION IN EINER BEGRENZTEN ZYLINDRISCHEN GEOMETRIE MIT 
FREIER OBERFLIZCHE: ANMERKUNG EMBER DEN EINFLU~S DER 

OBERFLACHENADSORPTION UND DER ANREICHERUNG DES GELOSTEN 
STOFFES AN DER LUFT-FLUSSIGKEIT-GRENZFLACHE 

~nf~g-D~ Einsetzen der station~ren B~nard-Konvektion zweier Komponenten in einer 
zylindrischen Geometric mit freier OberfIiiche wird betrachtet. Besondere Aufmerksamkeit gilt dabei der 
Adsorption und der moglichen Anreicherung des geliisten Stoffes an der freien Oberfllche. Fiir den EinfluB 
des letzteren Prozesses auf die kritische Marangoni- und Rayleigh-Zahl wird eine erste Abschatznng 

gegeben. 

KOHBEKHHR B OrPAH~~EHHOM OE-BEME ~H~HHAP~~ECKO~ @OPMbI CO 
CBOBO&HOfi HOBEPXHOCTbIO: POJII HOBEPXHOCTHOH AljCOPBHMH M IIPOHECCA 

HAKOI-IJIEHHII PACTBOPEHHOI-0 BEDU(ECTBA HA I’PAHMHE PA3AEJIA 
BO3m-XHBKOCTb 

~Hcute~yerca ao3mimronetme crausroiiapuofi rcoxine~umi Eepuapa, BM3BaHuOfi Aey~r 
Mexanzwaw, B o6xwe ~~~~0~ r&opMar co cao60~0~ noaepxwcz~~o. Oc&oe aH~MaH~e 
06paUrerro Ha aRcop69mo H a03hiOxitoe HaKOuJIeuKe pa~BO~H~Or0 BeiIUeCfBa Ha 3TO2 uOBepxHocTH. B 
nepaohi nptr6nmxemm noxaaauo mnnmise anix npoueccoe na upiiru~ecmie wcna MapawroHH R P3nen. 


